Limits on classical communication from quantum entropy power inequalities
نویسندگان
چکیده
Almost all modern communication systems rely on electromagnetic fields as a means of information transmission, and finding the capacities of these systems is a problem of significant practical importance. The Additive White Gaussian Noise (AWGN) channel is often a good approximate description of such systems, and its capacity is given by a simple formula. However, when quantum effects are important, estimating the capacity becomes difficult: a lower bound is known, but a similar upper bound is missing. Here we present strong new upper bounds for the classical capacity of quantum additive noise channels, including quantum analogues of the AWGN channel. Our main technical tool is a quantum entropy power inequality that controls the entropy production as two quantum signals combine at a beam splitter. Its proof involves a new connection between entropy production rates and a quantum Fisher information, and uses a quantum diffusion that smooths arbitrary states towards gaussians.
منابع مشابه
Geometric inequalities from phase space translations
We establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state. The key tool is a Fisher information inequality for a state which results from a certain convolution operation: the latter maps a classical probability distribution on phase space and a quantum state to a quantum state. We show that this inequality a...
متن کاملBounds on Information Combining With Quantum Side Information
Bounds on information combining” are entropic inequalities that determine how the information (entropy) of a set of random variables can change when these are combined in certain prescribed ways. Such bounds play an important role in classical information theory, particularly in coding and Shannon theory; entropy power inequalities are special instances of them. The arguably most elementary kin...
متن کاملThe conditional Entropy Power Inequality for quantum additive noise channels
We prove the quantum conditional Entropy Power Inequality for quantum additive noise channels. This inequality lower bounds the quantum conditional entropy of the output of an additive noise channel in terms of the quantum conditional entropies of the input state and the noise when they are conditionally independent given the memory. We also show that this conditional Entropy Power Inequality i...
متن کاملInformation theoretic inequalities
The role of inequalities in information theory is reviewed and the relationship of these inequalities to inequalities in other branches of mathematics is developed. Index Terms -Information inequalities, entropy power, Fisher information, uncertainty principles. I. PREFACE:~NEQUALITIES ININFORMATIONTHEORY I NEQUALITIES in information theory have been driven by a desire to solve communication th...
متن کاملInformation between quantum systems via POVMs
The concepts of conditional entropy and information between subsystems of a composite quantum system are generalized to include arbitrary indirect measurements (POVMs). Some properties of those quantities differ from those of their classical counterparts; certain equalities and inequalities of classical information theory may be violated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1205.3407 شماره
صفحات -
تاریخ انتشار 2012